Power Flattening Options for the ENHS (Encapsulated Nuclear Heat Source) Core

The 1st COE-INES International Symposium on Innovative Nuclear Energy Systems (INES-1)
Tokyo, Japan, October 31 - November 4, 2004

Ser Gi Hong, Ehud Greenspan
Department of Nuclear Engineering
University of California, Berkeley
TABLE OF CONTENTS

- Introduction
- Reactor Model and Assumptions
- Design Goals, Constraints and variables
- Core Design Options
- Core Performance
- Conclusions
ENHS (Encapsulated Nuclear Heat Source) Design Features

- 125MWt Low power density Pb or LBE cooled core
- A Battery-type Innovative Generation-IV power reactor
- Highly modular, factory manufactured and fueled in large numbers
- No fuel handling in the host country
- At least 20 years autonomous operation without refueling
- Fuel-self-sufficient core (CR~1.0) with a uniform fuel composition/without blanket assemblies: burnup reactivity swing <1$
- Natural circulation core heat removal : No valves, No pumps
- Very small probability of core damage accidents
- Fully passive removal of decay heat
- Natural safety: Negative reactivity feedback
Introduction

Objective of Present Work

- To assess feasibility of power flattening core options while maintaining flat k_{eff} over core life
 - Reduce the peak-to-average power peaking to increase core power
 - Reduce the peak-to-average discharge burnup and fast neutron fluence to increase the fuel utilization and core life
 - Analyze and compares the core performances of the new design options
Reactor Model and Assumptions

Reactor model for neutronic analysis (not scaled)

- Outer gap for central absorber (21)
- Space for central absorber (20)
- Inner gap for central absorber
- Inner gap for absorber (22)
- Core region (2)
- Core barrier
- Upper reflector (15)
- Upper support (14)
- Plenum (13)
Reactor Model and Assumptions

- Reactor Model, Assumptions, and Computational Methods
 - IFR type metallic fuel of Pu-U-10Zr
 - Pu is taken from LWR spent fuel (50GWD/tHM, 10 years cooling)
 - 75% smear density
 - HT-9 for all structural materials including clad
 - The lattice pitch of the reference ENHS (2.1216 cm) is kept for all cases.
 - The core is homogenized into a cylindrical annulus.
 - For depletion analysis, the core is divided into 9 zones (3 radial, 3 axial zones)
 - For the reference ENHS core, the radial and axial divisions are done so as to conserve the volume.
 - REBUS-3/DIF3D (80 group, R-Z) is used for depletion analysis.
 - A multi-group X-section based on ENDF/B-VI is prepared with TRANSX
 - All reactivity coefficients are calculated with DIF3D using 80 groups.
Design Goals, Constraints and Variables

- **Design Goal**
 - The power distribution should be as flat as practical.
 - Peak-to-average power should be nearly constant over core life

- **Design Constraints**
 - Burnup reactivity swing over 20 years should be less than 2%.
 - k_{eff} during core life should be larger than unity.
 - Total power and core volume are fixed as those of the reference ENHS core.

- **Design Variables**
 - Fuel rod diameter
 - Positions of the interfaces between core regions
 - Core region-wise plutonium weight percents (wt%)
Core Design Options

- **Reference Core (Reference ENHS core)**
 - A uniform composition (12.20wt% Pu) and single dimension of fuel rod

- **Design-I (BREST-like approach)**
 - Uniformity of fuel composition is kept but three different fuel rod diameters are used:
 - Inner core: clad inner radius and its thickness are reduced by 5% and 4.5%, respectively.
 - Middle core: same fuel rod diameters as the reference core are used.
 - Outer core: inner clad radius is increased by 12% but the same thickness as the reference ENHS is used.
 - The interface between middle and outer cores is moved inwardly by 6.0cm.

- **Design-II (Conventional approach)**
 - A single dimension of fuel rod is kept but three radially different enrichment levels are used (10.52wt%, 12.20wt%, 15.80wt% for inner, middle, and outer cores, respectively)
 - This approach is conventional but the question is whether or not it is feasible to maintain nearly flat k_{eff} as well as a flat power shape over the core life.
 - The interface between middle and outer core regions moved inwardly by 6.0cm.
Core Design Options

- **Design-III (Refined approach)**
 - Similar to Design-II but, in addition, axial enrichment splitting is used:
 - Inner core: 12.1wt%Pu, 9.1wt%Pu, and 12.1wt%Pu for lower, middle, and upper regions, respectively
 - Middle core: 15.1wt%Pu, 11.3wt%Pu, and 15.1wt%Pu for lower, middle, and upper regions, respectively
 - Outer core: 17.3wt%Pu for all three regions
 - The radially middle core is expanded inwardly and outwardly by 4.0cm.
 - The axially middle core is expanded upward and downward by 10.0cm.
K\text{eff}, CR, and TRU wt% Evolutions

- New designs have larger burnup reactivity swings than the reference ENHS.
- Design-I using uniform fuel composition has smallest burnup swing of ~1$.
- In Design-II and III, k_{eff} increases rapidly after their minimum value.
- The reference ENHS and Design-I have nearly similar CR evolutions.
- CR evolutions of Design-II and III are parallel to each other:
 - CRs are initially much less than unity and then go up to larger than unity and thereafter decrease slightly.
 - This steep variation of CR is correlated with increase of power density in the core center where the Pu wt% is the smallest.
Core Region-wise k_{inf} Changes (BOL k_{inf}/change%)

<table>
<thead>
<tr>
<th>Core designs</th>
<th>Design-I</th>
<th>Design-II</th>
<th>Design-III</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>1.1809/+1.21%</td>
<td>1.1038/+5.48%</td>
<td>1.1986/+1.27%</td>
<td>1.2024/+1.24%</td>
</tr>
<tr>
<td>Middle</td>
<td>1.1809/+1.44%</td>
<td>1.1038/+6.18%</td>
<td>1.0099/+12.1%</td>
<td>1.2024/+1.09%</td>
</tr>
<tr>
<td>Upper</td>
<td>1.1809/+1.20%</td>
<td>1.1038/+5.48%</td>
<td>1.1986/+1.19%</td>
<td>1.2024/+1.16%</td>
</tr>
<tr>
<td>Middle core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>1.2010/+0.19%</td>
<td>1.2043/+0.11%</td>
<td>1.3602/-4.11%</td>
<td>1.2024/+0.19%</td>
</tr>
<tr>
<td>Middle</td>
<td>1.2010/+0.31%</td>
<td>1.2043/+0.20%</td>
<td>1.1542/+2.18%</td>
<td>1.2024/+0.36%</td>
</tr>
<tr>
<td>Upper</td>
<td>1.2010/+0.11%</td>
<td>1.2043/+0.06%</td>
<td>1.3602/-4.15%</td>
<td>1.2024/+0.16%</td>
</tr>
<tr>
<td>Outer core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>1.2534/-0.67%</td>
<td>1.3930/-4.31%</td>
<td>1.4624/-4.90%</td>
<td>1.2024/-0.39%</td>
</tr>
<tr>
<td>Middle</td>
<td>1.2534/-0.33%</td>
<td>1.3930/-4.86%</td>
<td>1.4624/-5.51%</td>
<td>1.2024/+0.10%</td>
</tr>
<tr>
<td>Upper</td>
<td>1.2534/-0.66%</td>
<td>1.3930/-4.32%</td>
<td>1.4624/-4.92%</td>
<td>1.2024/-0.32%</td>
</tr>
</tbody>
</table>

- For the reference ENHS, BOL k_{inf} is uniform and its change is very small.
- For Design-I, BOL k_{inf} is not uniform but its change is very small.
- For Design-II, k_{inf} increases in inner core but decreases in outer core. (k_{inf} change in middle core is very small.)
- For Design-III, k_{inf} changes for all core regions are large.
スライド 30

日本語のテキストが入っているが、具体的な意味は解読できません。
Axial Power Distributions

Reference ENHS

Power density (normalized)

Distance (cm) from core top

BOL
EOL

Design-I

Distance (cm) from core top

BOL
EOL

Design-II

Power density (normalized)

Distance (cm) from core top

BOL
EOL

Design-III

Power density (normalized)

Distance (cm) from core top

BOL
EOL

Reference ENHS, Design-I, Design-II, and Design-III axial power distributions are shown.
Axial Power Distributions

- The axial power distributions of all cores except Design-III are nearly the same and they are nearly constant throughout the core life.

- The axial power distribution of Design-III significantly vary with core life and the central dip is due to the lower plutonium content in the central core region.
Radial Power Distributions

Reference ENHS

Design-I

Design-II

Design-III
Radial Power Distributions

- For the reference ENHS core, the radial power distribution is nearly independent of burnup.
 - The peak-to-average channel power ratio increases from 1.5 to 1.53 (~1.9%)

- For Design-I core, the overall shape of the radial power distribution is also nearly independent of burnup.
 - The peak-to-average channel power ratio increases from 1.154 to 1.21 (~4.7%)

- The radial power distributions of Design-II and III are similar in shape and both vary significantly from BOL to EOL: from 1.217 by 1.9% for Design-II while from 1.148 by 6.8% for Design-III
For the reference ENHS and Design-I cores, the 3-D power peaking factors are nearly constant throughout core life.

Design-II core 3-D power peaking factor varies significantly over life (by ~9.8%)

Design-III 3-D power peaking factor is nearly constant for 14 years and hereafter increases up to 1.397 by 4.9%.
BOL Core Physics Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design-I</th>
<th>Design-II</th>
<th>Design-III</th>
<th>Reference ENHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Pu wt% in HM</td>
<td>12.16</td>
<td>13.16</td>
<td>13.59</td>
<td>12.20</td>
</tr>
<tr>
<td>Burnup reactivity swing (%dk)</td>
<td>0.365</td>
<td>0.515</td>
<td>0.595</td>
<td>0.221</td>
</tr>
<tr>
<td>Peak-to-average channel power</td>
<td>1.154</td>
<td>1.217</td>
<td>1.148</td>
<td>1.500</td>
</tr>
<tr>
<td>Peak burnup (GWD/tHM) after 20EFPY</td>
<td>85.6 (104.5<sup>a</sup>)</td>
<td>74.0 (98.9)</td>
<td>72.3 (105.3)</td>
<td>99.89 (104.4)</td>
</tr>
<tr>
<td>Average burnup (GWD/tHM) after 20EFPY</td>
<td>47.2 (57.6)</td>
<td>50.8 (67.9)</td>
<td>51.5 (75.0)</td>
<td>50.80 (53.1)</td>
</tr>
<tr>
<td>Peak fast neutron fluence (n/cm<sup>2</sup>)</td>
<td>3.275E+23</td>
<td>2.993E+23</td>
<td>2.746E+23</td>
<td>3.829E+23</td>
</tr>
<tr>
<td>Temperature reactivity coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler effect (dk/kk'C)</td>
<td>-5.4294E-06</td>
<td>-5.4242E-06</td>
<td>-5.6096E-06</td>
<td>-5.2442E-06</td>
</tr>
<tr>
<td>Axial fuel expansion (dk/kk'C)</td>
<td>-4.6380E-06</td>
<td>-4.8086E-06</td>
<td>-3.5211E-06</td>
<td>-4.6379E-06</td>
</tr>
<tr>
<td>Coolant expansion (dk/kk'C)</td>
<td>+3.1437E-06</td>
<td>+2.9389E-06</td>
<td>+3.2015E-06</td>
<td>+1.6747E-06</td>
</tr>
<tr>
<td>Grid plate expansion (dk/kk'C)</td>
<td>-8.3824E-06</td>
<td>-8.7447E-06</td>
<td>-8.4701E-06</td>
<td>-8.0679E-06</td>
</tr>
<tr>
<td>Coolant void reactivity effect (%dk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner core (+gas plenum)</td>
<td>+2.644 (+1.388)</td>
<td>+2.046 (+1.232)</td>
<td>+2.169 (+1.242)</td>
<td>+2.718 (+1.516)</td>
</tr>
<tr>
<td>Middle core (+gas plenum)</td>
<td>+1.032 (+0.406)</td>
<td>+2.051 (+1.019)</td>
<td>+2.387 (+1.139)</td>
<td>+0.689 (-0.068)</td>
</tr>
<tr>
<td>Outer core (+gas plenum)</td>
<td>-0.271 (-0.756)</td>
<td>-0.642 (-1.079)</td>
<td>-0.592 (-1.126)</td>
<td>-0.694 (-1.045)</td>
</tr>
<tr>
<td>Total core (+gas plenum)</td>
<td>+3.519 (+1.404)</td>
<td>+3.551 (+1.536)</td>
<td>+3.971 (+1.690)</td>
<td>+2.555 (+0.424)</td>
</tr>
<tr>
<td>Peripheral absorber worth (%dk)</td>
<td>2.760</td>
<td>4.118</td>
<td>4.303</td>
<td>1.990</td>
</tr>
<tr>
<td>Central absorber worth (%dk)</td>
<td>3.200</td>
<td>2.130</td>
<td>2.082</td>
<td>4.138</td>
</tr>
<tr>
<td>Peripheral + central absorbers worth (%dk)</td>
<td>6.733</td>
<td>7.002</td>
<td>7.138</td>
<td>6.811</td>
</tr>
<tr>
<td>Total heavy metal inventory (kg)</td>
<td>18809</td>
<td>17505</td>
<td>17505</td>
<td>17505</td>
</tr>
<tr>
<td>Total plutonium inventory (kg)</td>
<td>2287</td>
<td>2303</td>
<td>2379</td>
<td>2135</td>
</tr>
</tbody>
</table>

^aPeak burnup for fluence of E>0.1MeV neutrons of 4.0x10²³n/cm²

17 COE-INES-1, Tokyo, Japan, October 31- November 4, 2004
The average discharge burnup corresponding to a peak fast fluence limit increase by 8.5%, 27.9%, and 41.2% for Design-I, II, and III, respectively.

The burnup reactivity swing for these cores increase from 0.22%dk to 0.37%dk, 0.52%dk, and 0.60%dk for Design-I, II, and III, respectively.

The reactivity coefficients of the new cores are nearly the same as those of the reference ENHS core except for the coolant expansion – New design cores have slightly less negative coolant expansion reactivity.

The inner core void reactivity of the new cores is somewhat less positive than the reference ENHS core because of power shift. However, these cores have more negative middle core void reactivity and their total void reactivity is slightly larger than that of the reference ENHS core.

The new cores have significantly larger peripheral absorber reactivity worth but significantly smaller central absorber worth than the reference ENHS core. The combined reactivity worth of new cores are nearly the same as that of the reference ENHS core.
EOL Core Physics Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design-I</th>
<th>Design-II</th>
<th>Design-III</th>
<th>Reference ENHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Pu wt% in HM</td>
<td>12.95</td>
<td>13.82</td>
<td>14.17</td>
<td>13.11</td>
</tr>
<tr>
<td>Peak-to-average channel power</td>
<td>1.208</td>
<td>1.240</td>
<td>1.226</td>
<td>1.529</td>
</tr>
<tr>
<td>Temperature reactivity coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doppler effect (dk/kk'C)</td>
<td>-4.4235E-06</td>
<td>-4.4403E-06</td>
<td>-4.5166E-06</td>
<td>-4.2202E-06</td>
</tr>
<tr>
<td>Axial fuel expansion (dk/kk'C)</td>
<td>-4.6221E-06</td>
<td>-4.6194E-06</td>
<td>-3.9979E-06</td>
<td>-4.6057E-06</td>
</tr>
<tr>
<td>Coolant expansion (dk/kk'C)</td>
<td>+3.3708E-06</td>
<td>+3.1202E-06</td>
<td>+3.3144E-06</td>
<td>+2.5177E-06</td>
</tr>
<tr>
<td>Grid plate expansion (dk/kk'C)</td>
<td>-7.9483E-06</td>
<td>-8.2625E-06</td>
<td>-7.9634E-06</td>
<td>-8.0045E-06</td>
</tr>
<tr>
<td>Void reactivity effect (%dk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner core (+gas plenum)</td>
<td>+2.778 (+1.523)</td>
<td>+2.626 (+1.593)</td>
<td>+2.505 (+1.492)</td>
<td>+2.809 (+1.618)</td>
</tr>
<tr>
<td>Middle core (+gas plenum)</td>
<td>+1.023 (+0.424)</td>
<td>+1.047 (+0.436)</td>
<td>+1.784 (+0.718)</td>
<td>+0.659 (-0.043)</td>
</tr>
<tr>
<td>Outer core (+gas plenum)</td>
<td>-0.247 (-0.694)</td>
<td>-0.550 (-1.149)</td>
<td>-0.604 (-0.966)</td>
<td>-0.668 (-1.009)</td>
</tr>
<tr>
<td>Total core (+gas plenum)</td>
<td>+3.628 (+1.563)</td>
<td>+3.254 (+1.246)</td>
<td>+3.613 (+1.470)</td>
<td>+2.644 (+0.572)</td>
</tr>
<tr>
<td>Peripheral absorber worth (%dk)</td>
<td>2.452</td>
<td>2.679</td>
<td>2.772</td>
<td>1.817</td>
</tr>
<tr>
<td>Central absorber worth (%dk)</td>
<td>3.291</td>
<td>3.130</td>
<td>3.108</td>
<td>4.104</td>
</tr>
<tr>
<td>Total heavy metal inventory (kg)</td>
<td>17869</td>
<td>16565</td>
<td>16552</td>
<td>16564</td>
</tr>
<tr>
<td>Total plutonium inventory (kg)</td>
<td>2314</td>
<td>2289</td>
<td>2345</td>
<td>2171</td>
</tr>
</tbody>
</table>
The reactivity coefficients at EOL are slightly less negative for all cores than at BOL.

On the other hand, the total coolant void worth of Design-II and III is less positive at EOL than at BOL; this is because the radial power distribution of these cores at EOL is less outwardly shifted than at BOL.

The EOL peripheral absorber worth of new cores is reduced while the central absorber worth is increased. The combined absorbers worth at EOL is less than at BOL but is sufficient to reduce k_{eff} to below 0.95.
Other Options (Going On)

- **Option-I**
 - Extension of the central absorber region
 - Single fuel rod dimension and fuel composition are kept.
 - The central absorber region consists of 5% structure and 95% void.

- **Option-II**
 - Use of the core region-wise lattice P/D ratios
 - Single fuel rod dimension and fuel composition are kept.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Reference ENHS</th>
<th>Option-I</th>
<th>Option-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonium wt%</td>
<td>12.20</td>
<td>12.08</td>
<td>12.35</td>
</tr>
<tr>
<td>P/D ratio (IC/MC/OC)</td>
<td>1.36/1.36/1.36</td>
<td>1.28/1.28/1.28</td>
<td>1.44/1.38/1.27</td>
</tr>
<tr>
<td>Burnup swing (%dk)</td>
<td>0.221</td>
<td>0.435</td>
<td>0.468</td>
</tr>
<tr>
<td>Initial conversion ratio</td>
<td>1.0446</td>
<td>1.0345</td>
<td>1.0236</td>
</tr>
<tr>
<td>3-D power peaking factor (BOL)</td>
<td>1.829</td>
<td>1.530</td>
<td>1.459</td>
</tr>
<tr>
<td>Channel peak-to-average power (BOL)</td>
<td>1.500</td>
<td>1.316</td>
<td>1.204</td>
</tr>
<tr>
<td>Average discharge burnup (GWD/tHM)</td>
<td>50.80</td>
<td>50.8</td>
<td>50.7</td>
</tr>
<tr>
<td>Peak discharge burnup (GWD/tHM)</td>
<td>99.89</td>
<td>82.6</td>
<td>93.1</td>
</tr>
<tr>
<td>Peak fast neutron fluence (n/cm²)</td>
<td>3.829E+23</td>
<td>3.275E+23</td>
<td>3.527E+23</td>
</tr>
</tbody>
</table>

- **Option-III**
 - Use of a small number of absorber rods
The power distributions are nearly constant throughout core life.
The burnup reactivity swings are slightly larger than 1$.$
In comparison with the reference ENHS, the channel peak-to-average powers of Option-I and –II are reduced from 1.50 to 1.316 and 1.204, respectively.
Option-II is not so effective in the discharge burnup flattening.
Conclusions

- It is possible to design ENHS cores to maintain nearly flat k_{eff} over 20 years to have significantly more flattened power density and discharge burnup distributions than the reference ENHS core.

- As the results, it will be possible to design the ENHS reactor to operate at a higher power level and to extract more energy per core loading. This will improve the economics of ENHS reactors.