CORE CONCEPT OF COMPOUND PROCESS FUEL CYCLE

November 2004
Objectives

Proposal of innovative nuclear fuel cycle system
- economic competitiveness
- efficient utilization of nuclear fuel resources
- reduction of environmental burden
- enhancement of nuclear non-proliferation

Effective utilization of LWR spent fuel and suppression of LWR spent fuel pile-up

Smooth evolution from LWR system to fast reactor system

A new fuel cycle concept “Compound Process Fuel Cycle”
Concept of Compound Process Fuel Cycle

- LWR spent fuels are multi-recycled without conventional reprocessing but with only pyrochemical processing.
- U, Pu, MA, FP are recycled. Utilization of FR core

Pyrochemical Processing
- Pre-process procedure of conventional reprocessing (only de-cladding and pulverization)
- Only volatile FP is removed

Voloxidation
- AIROX
- DUPIC

LWR Spent Fuel

U, Pu, MA, FP

Target Burn-up

Conventional Reprocessing

FR Fuel Recycle

Fresh FR Fuel Fabrication

Loading to FR Core

Cooling

FR Fuel

Fuel Unloading

Reuse Fuel Fabrication

U, Pu, MA

U, Pu, MA, FP

Volatile FP

HLW
Merits of the Compound Process Fuel Cycle Concept

1. Significantly simplified process compared with conventional reprocessing → **Economic competitiveness**

2. Small TRU loss rate compared with conventional reprocessing
 No MA increase after multi-recycling → **Reduction of environmental burden**

3. More than 5 times increase in burn-up of LWR MOX spent fuel → **Efficient utilization of resources**

4. Lumped processing of all actinides including FP → **Nuclear non-proliferation**

5. Suppression of LWR spent fuel pile-up
Core Specification

In the case of LWR MOX S/F (60 GWd/t)

Conditions
- Max. linear heat rate < 400 w/cm
- Max. fast neutron fluence < 5×10^{27} /m2
- Burn-up reactivity loss < 4% $\frac{k}{k'}$

Major specifications
- Na cooled / MOX fuel
- Radial heterogeneous core
- Cycle length : 730 days
- Reactor thermal power : 2600 MWt
- Core height (FR fuel/LWR fuel) : 100/160 cm

Control Rod (Main)
Control Rod (Buck up)
Radial Shield

Recycled LWR Fuel

2n time Recycled LWR Fuel
Both of neutron absorption effect and volume effect* are taken into account.

* : Reduction of heavy metal volume fraction due to residual FP in recycled fuel
Pu mass & Pu fissile reach to equilibrium state after 1st or 2nd recycle while residual FP increases monotonically.

Multi recycle is limited up to 4 times.
Fuel Flow of LWR Spent Fuel
Major Core Nuclear Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Core 1 (1<sup>st</sup> & 2<sup>nd</sup> time recycle)</th>
<th>Core 2 (3<sup>rd</sup> & 4<sup>th</sup> time recycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu enrichment of fast reactor fuel (wt%)</td>
<td>26.2</td>
<td>23.9</td>
</tr>
<tr>
<td>Burn-up reactivity loss (% Δk/kk’)</td>
<td>3.78</td>
<td>3.95</td>
</tr>
<tr>
<td>Maximum fast neutron fluence (n/m<sup>2</sup>)</td>
<td>3.9 \times 10<sup>27</sup></td>
<td>3.9 \times 10<sup>27</sup></td>
</tr>
<tr>
<td>Maximum linear heat rate (W/cm)</td>
<td>383</td>
<td>371</td>
</tr>
<tr>
<td>Breeding ratio (EOC)</td>
<td>1.08</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Power Distribution in Radial Direction
(Core 2 --- 3rd and 4th Recycle)
The burn-up of BWR MOX fuel reaches 330 GWd/t which corresponds to more than five times of that of BWR MOX S/F.
Changes during Recycling (MA Mass and MA Composition)

MA mass shows no increase after multi-recycling.
Actinide Mass which Leaks out of the System

Conventional Reprocessing

Fast Reactor

Energy

\[M_w^4 = (1-B)L_2 M_{R4} \]

Pyrochemical Processing

\[M_w^2 = (1-B)L_1 M_{R2} \]

\[M_w^3 = (1-B)L_1 M_{R3} \]

\[M_w^1 = (1-B)L_1 M_{R1} \]

\[M_w^0 = L_1 M_0 \]

Compound process cycle

Conventional reprocessing

\[(0.78 + 3.76L_1/L_2)/5 = 0.91 \]

\[L_1 = L_2 \]

\[= 0.23 \]

\[(L_1/L_2 = 0.1) \]
Changes during Recycling
(Fuel Heat Generation -- after 4 year cooling)

Increase of fuel heat generation due to multi-recycling is less than twice of LWR S/F.
Changes during Recycling
(Fuel Radioactivity-- after 4 year cooling)
Conclusions

A new fuel cycle concept “Compound Process Fuel Cycle” is proposed.
The feasibility of the cycle has been studied, mainly in core characteristics, taking an example for BWR MOX spent fuel.

Major Results

- The BWR MOX spent fuel can be recycled 4 times achieving more than 330 GWd/t of burn-up.
- Efficient utilization of resources and reduction of environmental burden can be expected.
 - Reduction of actinide mass leaking out of the system
 - No MA mass increase after recycling
 - More than 5 times increase in fuel burn-up
- Economic competitiveness, enhancement of nuclear non-proliferation, and suppression of LWR spent fuel can be expected.